Theorem Proving for Maude’s Rewriting Logic Vlad Rusu and Manuel Clavel

نویسندگان

  • Vlad Rusu
  • Manuel Clavel
چکیده

We present an approach based on inductive theorem proving for verifying invariance properties of systems specified in Rewriting Logic, an executable specification language implemented (among others) in the Maude tool. Since theorem proving is not directly available for rewriting logic, we define an encoding of rewriting logic into its membership equational (sub)logic. Then, inductive theorem provers for membership equational logic, such as the itp tool, can be used for verifying the resulting membership equational logic specification, and, implicitly, for verifying invariance properties of the original rewriting logic specification. The approach is illustrated first on a 2-process Bakery algorithm and then on a parameterised, n-process version of the algorithm. Key-words: Rewriting logic, inductive theorem proving, Maude

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inductively Verifying Invariants of Rewriting Logic Specifications

We present a novel approach based on inductive theorem proving for verifying invariants of dynamic systems specified in rewriting logic, a formal specification language implemented in the Maude system. An invariant is a property that holds on all the states that are reachable from a given class of initial states. Our approach consists in encoding the semantic aspects that are relevant for our t...

متن کامل

Vérification d'invariants pour des systèmes spécifiés en logique de réécriture

We present an approach based on inductive theorem proving for verifying invariants of dynamic systems specified in rewriting logic, a formal specification language implemented in the Maude system. An invariant is a property that holds on all the states that are reachable from a given class of initial states. Our approach consists in encoding the semantic aspects that are relevant for our task (...

متن کامل

Combining Theorem Proving and Narrowing for Rewriting-Logic Specifications

We present an approach for verifying dynamic systems specified in rewriting logic, a formal specification language implemented in the Maude system. Our approach is tailored for invariants, i.e., properties that hold on all states reachable from a given class of initial states. The approach consists in encoding invariance properties into inductive properties written in membership equational logi...

متن کامل

The Itp Tool's Manual *

The ITP tool is an experimental inductive theorem prover for proving properties of Maude equational specifications, i.e., specifications in membership equational logic with an initial algebra semantics. The ITP tool has been written entirely in Maude and is in fact an executable specification of the formal inference system that it implements. 1 Getting started To run the current version of the ...

متن کامل

The Maude 2.0 System

This paper gives an overview of the Maude 2.0 system. We emphasize the full generality with which rewriting logic and membership equational logic are supported, operational semantics issues, the new built-in modules, the more general Full Maude module algebra, the new META-LEVEL module, the LTL model checker, and new implementation techniques yielding substantial performance improvements in rew...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009